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PREFACE

This Memorandum is another in the series of RAND studies concerned
witn predicting demands for spare parts. Our objective has been to
determine empirically whether exponential smoothing technigues can
predint demands mora accurately than the moving average techniques
currer L1y being used in the Air Force. We applied verious forms of
these two types of predictiu.. ~rocedures to three sets of historical
data:

1) Bass demsnds for Hi-Valu an Category TI-R items for the B-52,

2) Components of the Falcon miss... 6 and

3) Depot issues f. r low coat Category III it ms on the B-52.

The Navy and some -industrial firms are already using exponential
smoothing techniques. We have undertaken this stuly to examine the
possible usefulness of these techniques to the Air Force. Personnel
who are concerned vith predicting the demand for spare parts should be
especially interszsted in exponential swmoothing methods.



SUMMARY

This Memorandum, a comparative study of techniques for predaicting
the demand for spare parts, attempted to discover the potential ad-
vantaeges which exponential smoothing has over the moving aversge
procedures the Air Force is now using.

In exponential smoothing the predicted average is found bty weight-
ing the iverage computed at the end nf the last time pericd with the
observed demand during the current period. One mey vary the weighting
cohs‘cant on the basis of how much weight one wants to put on the last
average.

Various forms of exporential smoothing and avereging were applied
to three sample sets of de*a: Ei-Velu and Category II recoverable B-52
parts, components of the Falcorn missile, and Category III depot issues
of B-52 items. To the usual methods for selecting preferred techniques
used in previous studies we added a loss function, an aggregate measure
of accuracy vhich balances procurement costs against holding costs.

The study led to the following findings and conclusions:

(1) For any of the three sets of data, exponential smoothing was
not a significantly better prediction technique than the cumulative
issue rate procedures now being used in the Air Force. Nevertheless,
it does have definite computational advantages which may be valusble.
In first order smoothing only one average need be stored for each item.
The rate of response due to the smoothing constant can be easily changed,
and trends can also be accommodated readily.

(2) A measure of aggregate loss, such as the loss function intro-

duced in this study, should be used to select preferred smoothing



techniques. The ranking procedures used in earlier studies (as well
as in this one) do not always serve to discriminate among techniques.
More important, they ignore the magnitude of the errors.

(3) The use of program element information for the Falcon com-
ponents improved the accuracy of our predictions; application of
requisition data, which was available for the Category III items, did
not.

(4) WwWith any of the techniques applied to the Category III items,
prediction accuracy did not increase substantially when the base period

was made longer than one year.
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I. INTRODUCTION

PURPOSE AND SCOPE

This Memorandum is one of a continuing series on the prediction
of demand tor spure parts, & subject which is a serenn.al one in
Logistics. Our scope here does not involve testing a complete inven-
tory policy. Rather, we are restricting ourselv s to the simpler
question of prediction accuracy.

We have chosen such a limited objective for itwo reasons. In the
first place, exponential smcothing is a special case of & general class
of prediction techniques the peculiar properties of which make it a
convenient technique for application. Secondly, it is currently being
used by the Navy and some industrial firms, and we feel that the Air
Force should be interested in the evaluation of a prediction technique

that other users have found simple and successful.

OUTLINE OF THE STUDY

In Section 1II we present a general discussion of the problem of
predicting spares demand. Section III describes the moving average
and exponential smoothing techniques. Two fundamentally diffe. ent
sets of data were employed. The first set of datu,from two bases on
272 B-52 items and 27 Falcon recoverable parts,is introduced in
Section IV; the test design for this data is found in Section V.
Section VI deals with measures of accuracy, end Section VII presents
results, In Section VIII, the seccnd set of data, covering ten quarters
of depot issues for 425 Category III items, is described and results
are given. Section IX develops a method of measuring orror for an

aggregation of items; this method 1{s then used to evaluate prediction



techniques for the Category IIY items. Findings and conclusions
constitute Section X.



IY. PROBLEM QOF PREDICTING SPARES DEMAND

ASSUMPTI.ONS

We do not pretend to offer an exhaustive discussior. of the prob-
lem of predicting spares demand. Inztead, making seversal assumptlons
about the real world, we shall define and turn our attention to one
gpecific problem. We will define demand and specify the form of the
demand data. Then we shall discuss some of the relevant consider~

*
ations in demand prediction that influence our research design.

Definition of Demand

We are interested only in "recurring" demand for spare parts,
i.e., all except one-time demands, such as technical order compliance
demands where a nodified part is substituted for an inferior but
serviceable one. In the recoverable parts area, the definition »f
demand is further restricted to exclude a demand made on the supply
system if the hench check shows that the reparable turn-in is service-
able. The definition of a demand for x recoverable spare part is thus
identical with the Air Force definition of a maintenance replacement

removal (MRR).

Demand Data
We shall limit our i terest to problems in which the demand data
is sumnary information sp cifying total demand for each period by line

item, In the language of the mathematician we have a time series of

"Scme of the relevant idess are also discussed in A Comparative

Study of Prediction Techniques, by Max Astracran, Bernice Brown, and
J. W. Houghten, The RAND Corporation, RM-2811, December, 1961.




#*
demand. Initial estimates may or may ot be available. In some
cases the demand data may slzgo irclude a time geries of requisition
data, e.g. the total number of demands 8:d the total number of requi-

sitions used in making the demands oy quarter and item.

Program Element L.ta

Auxiliary dste such as the flying hours per monta may be on hand.
In Aixr Force demand prediction ;robiews a variety of program clements
has been examined, including sorties, lew-level flying hours, and
equipment hours.** The objective is alvays to find some program cle-
ment or e¢lements that will transform the original time sevies ol data
into a new series of data from which more accurate predictions can be

made,

Probability Distribution of Demend

We shall not make any assumption sbout the "true" probability
distribution of demand nor shall we restrict ourselves to stationaxry

dumd.m

Objective of Demand Prediction
Our objective is to find s technique that will predict demand

most accurately over a ressonably long pericd of time, such as pro-

curenment leoadtime -~ e.g. nine months or a year. These predictions

S A—

In the event that initial estimates and demand data are both
available, one technique for combining them is suggested in W. H.

MeGlothlin, Devel t of esian Paxrumetexrs for f e Parte Demand
grediction, The % l‘ﬁzrporati.on, ﬁ:m, Jﬁ?, 1%%
See f. S. Campbell, The Relationship of Resource Demand to
Airbme Operations, The RAND Corporation, MM-3420-PR, January 1963.
If demand is stationary the minimum varisnce estimate of mean
demand is obtained by weighting all past dsia equally.




cannot be translated directly into procurement actions because safety

levels would have to be added for demand and lesdtime variations.

GENERAL CONSIDERATIONS

We have defined the problem above. Let us examine here the
rationale for our choice of problem. We assumed a time series of
sumary data, because this is the sort most commonly encountered.

We set an objective of rredicting demand over a procurement leadtime

s0 that the prediction errors could be computed. In contrast, a
prediction of average demand plus a safety level, though appropriate
for procurement, would biess the errcr distribduticn. Furthermore, the
satety level is an additive to the average demand and cen be considered
sepaxrately.

Once one has selected the objective of predicting demand over a
procurement leadtime, it is not necessary to assume & specific proba-
bility distribution. In statistical terms, the estimation of the
mean vilue does not require that we know the form of the probability
distribution. Murthermore, we have good reasoas to tvon!d the selention
of a specific probability distribution. In the firai place, we are
interested in the prediction of dewand at different echelzns including
base and depot. Variance of demand at each e-uelon is strongly influ-
enced by the requisitioning policies at lower echelons. For exumrle,
if bases order a year's supply of en item instead of a quarter's worth,
the variance of demand on the depot will be increased. If one proba-
bility distribution were to suffice for all echelons, it would be
essential that the distribution have at leas* two parameters -- to

provide for different means and variances by line item. Secondly, we



believe thet a demand prediction technique should t» sensitive to slow
changes in the mean demand rate. In other words, our examination of
data leads us to believe that items show nun-stationary demand charac-
teristics that should not be neglected. The estimation of parameters

for a two-parameter non-stationary probability distribution, however,
is a formidable task.



III. PREDICTION TECHNIQUES

BACXGROUND

The current USAF procedure for computing the "historical usage
rate" element of the requirements computation at both the base and
the depot levels is essentially an unweighted moving average which is
updated periodically. Such averages have many of the desirable charac-
teristics of a practical method for smoothing out the fluctuations in
a demand histor; to get an estimate of the expected demand rate. They
have a stable response to changes, and the rate of response can be
controlled by the number of months (or observations) included in the
average. Although moving averages are simple to compute, they require
that tre individual observations used in computing be retained so that
new information can be added and old information dropped. Exponential
smcothing or exponential weighting 1s similar to a moving average, ex-
cept that all observations are used. The former, however, does not
require the keeping of a long historical record in the active file or
computer, and the data<processing requirements are therefore decreased.
Like the ordinary moving average, exponeniial smoothing has a stable
response to changes, but the rate of response can be readily adjusted.
Then, too, the method can be extended to the calculation of trends,

and changes in trends, with very little extra data-processing.

MOVING AVERAGES

Before defining exponential swoothing, let us recall the procedure
followed in updating a moving average. Suppose we have observed dt
demands in the current time period, dt-l demands in the last period,



cl,___‘2 two months ago, etc. Then the updated average demand at the end

of the current period is given by

1
Dy=g(ag+ap ) *a o % e v d y,y)
1
=Dy *+§ (4 - )
where Dt-l is the value of the moving average at the end of the last

perlod. Thus the updating is accomplished by adding to the prior
average a fraction of the difference between the current observation

and the observation N periods old, 4, This is the effect of "add-

-N°*
ing the newest and discarding the oldest, then averaging the result.”
In this technique the most recent and the oldest observations
have the same influence (weight) on the updated averesge. In fact,
cach of the observations in the N periods has the same weight, 1/N.
The moving aversge obvionily requires that the individual observations
for all N pericu: b» reiained and used for each updating.
A method that could be used to avoid the equal weighting of all
data regardless of age is to use a weighted moving average. A sequence
of positive we’ghts, '0’ 8, a,‘,, see By whose sum i» one, is arbi-

trarily selected. The ydated aversge is then

Dp = 8% * &% * M2t ot M bee(na)

The weights can be selected 5o e to give more consideration to current
than to earlier data. This method, huwever, iavolves substantially
more compnutation than an unweighted moving a.erage, and also requires

that all N observations be reiained. In addition, although the weights



are arbitrary, subject only to the condition that they are positive
and their sum is unity, N must be presssigned.

A linear trend or higher order model can be accommodated by a
least squares procedure in which each squared error is weighted by

the appropriate ai.

EXPONENTIAL WEIGHTING

The Basic Concept. Suppose that we had stored only the average

demand computed last month* and had not stored the individual obser-
vations. This month we have a new demand quantity and want to update
the average. It seems logical that if the demand this month is higher
than the stored average, we should increase the latter. Conversely,
if the number of demands observed this month is smaller than the aver-
age at the end of the previous month we should decrease it. Further-
more, if the difference is small, the adjustment should be small. If
the demand has been substantially above (or below) the stored average,
the nev estimate should be increused (or decreased) by a sizeable amount.

The exponentially-weighted average computation can be described
symbolically as follows:

(1) D, =D, +a(d, -D, ), 0< ¢<& .1

or by rearrangement of terms,

(2) Dt = (l'd) Dt-l + adt)

'hlthough we are describing exponential weighting in terms of
demands per month, the procedure can be used to update any type of
data sequence or discrete iime geries such as demands per 1000 flying
hours, failures per 100 checkouts, issues, etc. The time period could
also be a day, month, quarter, etc.
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vhere:

D, = updated average (prediction) made at end of
current period, t;

D 1 * updated average at end of prior period, t-l;

d, = observation (i.e., demand, demand rate, etc.)
for the current period; and

o = weightii s or smoothing constant, a value
betwesan zero and one.

Repeated application of (2) to the most recent K observations

gives

(3) Dy = +a(lma, ) +ali-m)®a o+ ...

+ ¢:r(’l-<:r)"'l dt-(N-l) + (1-cr)ul>t_N

N-1
n
=a 2 (1-a) L (l'a)“Dt-l!”
n=o
vhere Dt-l is the prediction at the end of period t-N, or at the start

of these N observations. This value could also be considered as the
initial estimate for D prior to any experiance.

The weight assigned to each observation is a constant o times a
fraction 1-& wvith exponent equal to the age cf that observation -~
hence the terms "exponential we}ghttng" or "exponential smoothing."

As N becomes very large, i.e., as we have & very large nusber of
observations on which to base Dt’ the "initial estimate” term drops
out (i.e., "adequate” mctual experience becomes available). The sum
of the exponential (literally "geometric” in this discrete case) weight

approaches one:



N-1
(4) D = lim az (1-a)" d | *+ 0,
t N9® | neo

(5) Sunof weights =a 2 (1)” =@ [h(i-a)] "

n=o0

Figure 1 shows graphically the weight assigned to data t periods
old for three values of . It can also be seen from Egq. 3 that the
total weight given to all obgervations prior to the N most recent ones
18 (2-a)".

It is obvious from Eqs. i through 3 above that the "responsive-
ness" or "sensitivity" of the prediction (Dt) to current data (dt)
depends upon the magnitude of the constant, o. Larger values of &
glve additional weight to the more recent observations; the converse
is true for smaller values. Yet, all data are always considered in
D,
weighting procedure actually leads to drastic simplicity in data storage

however trivial the weight may be. This aspect of the exponential

requirements. As can be seen from Eqs. 1 and 2, the only historical
information needed at each updating is the prior period's predictionm,
t-1°

This data storage requirement contrasts sharply with the N period
(N 18 often 12 or 24 months) unweighted moving average. At each up-
dating in this procedure the oldest observation is dis:rrded and the
most recent one added to compute the new m»vsrage. This means, of

course, that the values for each of N observations must be stored.
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Fig. 1 — Weight assigned to data
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Selection of . The rationale behind selecting an spprupriste
value for a is nc more complex, and wifortunately no easier to justify,
than that behind selecting N for the commonly used moving averege.
Bither case requires a compromise between 1) prowptly reflecting true
changes in the data sequence, and 2) avoiding excessive response to
mere chance fluctuations. A large value for «a improves the rate of
response to a changing pattern in the data sequence by giving more
veight to recent data. Tre same is true, of course, with a small value
of N. In both situations, however, the ability of the technique to
smooth out random fluctuations is decreased.

The true optimm value for N or ¢ can never really be determined
for such a complex prediction problem as encountered in large scale
logistics systems. An extensive test against past experience, like
that reported herein, can indicate vhich of -esveral trial values of &
would have been best for the data studied. Put one caanot °.- -~~tain
that future data would lead to the same conclusion.

One spproach for establishing test values of the smoothing constant
is through an equivalence to traditionally accepted N-period unweighted
moving avereges. The dats included in the latter have an aversge age
oqual to:

(6) Qeloge. o (BN - K-

Using the veights shown in By. §, the 4ate in the exponentially-weighted
averege have an averege age equal tos



p1

2
(7 o0) + afl-er) (1) + a(2a) (2) ¢ ... ¢ c(l.-c)‘ (n)e+ ...
< n
- az a(lea) = l-f;'- .
=0

If wve now d2fine an exponential wveighting procedure as being
equivalent tu an N-period unweighted moving sverage iy the data have
the seme aversge age. then by equating Bg. £ with By. 7, we get

(8) c-éf,ml-?f,!.

Another means of defining equivalece is t. eqate the variances
of predictions made by each technique. If 02 is ile variance of the
observed data, then the varisnce of the N-period moving aversge is
o®A, sssuming the cbservaticns to be independent and from the eame
population. The predictions gemerated by exponential smoothing can
Ve shovn” o have variance equal to eo/(2-0). Equating the two
variances gives the seme results as ‘'n By. 8 above.

Table 1 shows some of the equivalent vaiuss of W and a. We see
that & value of @ equal to 0.200 gives results equivalent to those
cdtained from an uweighted moving awerege of 9 periods in the sense
described adove. In the latter, the 9 most recent odvservations are
wod, and the older ones are disoarded. In auponential veighting, sll
the cheervations are used. As oan be seen from Hg. 3, the total weight
assigned to all cheervations clder than the most recent nine is
(1-0.&))'-(.&))9-.107. Bessuse of this 4diffsrence between the
two techniques, predictions may &iffer swetanticlly although the

*
See, for exmmple, R. G. Browm,
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techniques are equivalent in terms of the average age of the data and

the prediction variance.

Table 1

VALUES OF THE WEIGETING CCNSTANT CORRESPOHDING
TO AN EQUIVALENT NOVING AVERAGE

Number of Periods Equivalent Exponential
in Moving Average Weighting Constant
(x) o)
3.0 0.500
6.0 0.28%
9.0 0.200
12.3 0.150
19.0 0.100
24.0 0.080

Iinear Trend and Righer Order Models. Up to this point we have

been discussing only the simplest prediction model, namely, the
straightforvard extrapolation of an updated constant value. Some-
times & data sequemte is wore realistically predicted by a more
elaborste mouel, such a8 one including a linear or gquadratic trend
or a cycle¢e. We shall be concerned here with only the first of these.

If there 1s no trend in the data so that a simple aversge s, can
be used for extrapolation, ~hen, as we have seen, single exponential
smoothing gives the estimate ., = Dt' If there is a linear trend in
the series, tbe model it assuned to be of the form

(9) ay,y = 8 *+ kb,



dtok = prediction for period t+k, kel, 2, ...,

bt = trend rate as of the end of period t,
expressed in units of increase or
decrease per period,

LR = trend value as of the end of period t.

The prediction of total demand for the next m periods is
| PS
ntl
z ‘tﬂ:"‘t’iTl by -
k=l

The model in Eq. 9 requires uwpiatin: two constants, L and bt‘ This

can be done by use of "second-order smoothing". A second-order smoothed
(or exponentially-weighted) aversge is siwply an average of the aver-
ages, 80 to spesk. The computation is id:mmtical to that in Egs. 1
through & for first order smoothing, only in this case the data sequence
i- th.sarl.uofbtrlthtm%mw. b\llifbédmto.ﬂn
second-order exponentially veighted sverege \p-dated at period t, then

(20) D = (IQ)D{_J_ + b,

Bl

- i 'E.“"rbﬂ - cg(l-o)nbt_n.

mntumnmmwmu.x.
Estimates of ‘t“btm‘“‘" by’

“
(1) §, =2, -0, o D+ 4 v,

L)

= a - 9 -
b = 1q (D - D), or Dy -D, .

*R. G. Brovn and R. 7. Meyer, "Rmdsmental Theorem of Exponential

Seoothing”, Jownal of the wm Research Socisty of Americs,
v°10 9, “0 » . oy » ”' 4
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Note that both &, and ﬁt can be written in terms of the first
and second-order smoothed values of the observed data sequence. The
latter then are the only values wh' ch need be stored.

Estimates of ‘t and b, can be derived informally if one assumes

t
that demand follows a linear model exactly, plotting the response of
D, and D} and choosing it and St 8o that the prediction coincides
with the assumed linear demand. A rigorous proof' has been given to
show that the coefficients of any polynomial model of degree k can
be expressed in terms of the first k + 1 degrees of exponential smooth-
ing, and that this polynomial minimizes the exponentially weighted
least square error.

In other words the coefficientes of the polynomial model can be
estimated by a least squares procedure in vhich the squared errors
are exponentially-weighted. This is completely analogous to the
procedure discussed above for moving averages, but here only k + 1

smoothed aversges rather than all N observations need be retained.

Brown and Meyer s cit. See also J. M. Dobbie, "A Simple
Proof of a Theorea u’%u t

Smoothing," Jo of the Operations
Beseaych Sccjety of Ameries, Vol. 1, No. 3, '&5"": 1553, vp. WL-453.
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IV. THE DATA - 1

This test of exponentially-weighted techniques is essentially a
sequel to another atw' of dewand prediction uechniques in the sense
that wve are using some of the same data and procedures. Two different
test designs are employed in the present study. They involve differ-
ent sets of data and techniques to “e compared. Those used in Design
1 are described in this and in Section V. Design 2 is described in
Section VIII.

The data used in Design 1 are from the above mentioned study,
wvhich focused wpon a sample of B-52 parts and Falcon components.
8ince a complete description of these data is given there, we shall
includs only a brief review here.

The sample of B-52 data consists of Hi-Valu and Category II re-
coverable parts from six major property classes: Ingine Components,
Airframs Structural Components, Gumery Cowponents, Bomding Fire
Control Components, Comamications Bquipment, and Aircraft A-ccssories.
The dsta, from two bases, Loring and Castle, cover a period of 33
months, from Jamuary, 1956 through Septesber, 1958. MM-2611 (pp. 33~
bO) describes hov a semple of 272 perts vas selected from the original
growp of T500 part numbers. This sample contains only parts with 5§ or
nore demands dwring the 33-month experience period.

These spare parts consuption data are related to a total of
68,000 flying howr's of operation of 169 different B-52's. These
planes include series B, C, D, B, 7. Jot all spare parts were appli-
cable to all series. The earlier study took this into account along

*
Astrachan, Provn, and Noughten, op. cit.
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vith the flying hour program of each aircraft series. We decided
that the 175 (of the 2T72) parts wvhich are applicable to all series
would be adequate for this test. A further restriction was placed
on the data for this study by our using only those line items (125
of the 175) vhich had some demand during the first 21 months. This
wvas the maximum experience period used for prediction, and it seemed
pointless to use any of these prediction techniques on the remaining
50, since these techniques always predict zero when based on zero de-
mands. The final B-52 sample for this study, then, consisted of 125
parts vhich were applicable to all series and which had some demand
during the first 21 months.

Data for the 27 Falcon ccuponent: cover a period of 26 months,
from May, 1955 through June, 1957. About 30,000 missile checkouts
(the program element used for prediction) were performed during this
period. We used the 23 (of the 27) components which had some demand
during the first 14 months -- the maximum experience period used for
prediction in this case. MNM-2811 dsscribes the Falcon data in greater
detail than we 4o here.

These are all the components of the missile.



V. THE TEN PREDICTION TECHNIQUES - DESION 1

This section outlines the specific tested applications of the
general concepts described earlier. The ten prediction techniquu.
used are designed to coupare the following: 1) exponential smoothe
ing with and without a program element, with and without trend; 2) the
effect of different values of the weighting constant ¢; 3) cumulative
aversge; 4) nine-month moving average; and 5) where appropriate, these
procedures as against those in RM-2011.

A preliminary trial run of the exponentially-weighted average
technique vas used to examine a vide range of values for «. The
results indicated that for our data, values of 0.10 and 0.20 would
be most appropriate in the sense of yielding reasonably saccurate, yet
significantly different, results. This finding is consistent wvith
the values for @ currently being used by the Mavy and several industrial
firms.

Techniques 1-4 are exponentially-wu.ighted techniques using as
inputs demands per progrem element -- flying hours for the B-52 parts,
checkouts for the Faloon components. JFor Technique 1 we used a = 0.10.
mmmotmmmmn'mcnuvmmmcqutea
using ¢ months of experience and 1. 2. Then, assuming that this part
would continus t0 be demanded at this same rete in the future, we obd-
tained the forecast for a particular moath by multiplying 1)t by the
sctual activity (flying hours or checkouts) for that month.” For

Although we refer to these as different techniques, they are
really variations of two basic models -~ exponential smoothing and

averaging.

"In a realistic prediction problem, the actual flying hours for
future months would have to be estimated.
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each experience period, predictions were made for the followin‘j

12 months within the limits of the data. Thus, there are 21 such
prediction sets (each consisting of 12 monthly predictions) for the
B-52 parts and 14 sets for the Falcon components.

Technique 2 1s the same as Technique 1 except that we used
a=0.20.

In Technique 3, we assume that there was a linear trend in the
demands per program element during the first t months of experience
and that this same trend will continue in the future. Using a = 0.10,
we compute ;‘t and {;t from Eq. 11, and &uk from Eq. 9 for k =1, 2,

«es 12. The forecast for a particular month is obtained ty multiplying
the appropriate &t +X by the activity (flying hours or checkouts) for
that month. Again there are 21 predictions sets for the B-52 parts
ard 1% sets for the Falcon componencs.

Technique 4 is the same as Technique 3 except that we used
@ = 0.20. HNote that second order smoothing must be used in Techniques
3 and 4.

Technique 5 is a simple unwveighted cumulative average or issue-
rate technique (identical to Technical I of RM-2811). In this tech-
nique, the total number of demands for a given part during t months of
experience is divided by the total activity (flying hours or checkouts)
during that period to give an average demand rate. The demand for s
particular month in the future is then obtained by multiplying this
average demand rate by the actual activity for that month, just as
with the other techniques.

Techniques 6, 7, 3 and 9 are like 1, 2, 3 and 4 respectively.

The only difference is that the inputs are the actual monthly demands
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instead of the demands per progrsa element. Hence the Dt and at*k
values are the monthly forecasts. The prediction problem 1s simpli-
Tied because no estimates of the program element in future -.onths is
needed.

Technique 10 is an unweighted nine-month moving average. The
procedure is like Teclnique 5 except that instead of all the dats, we
use only the most recent 9 months. A 9-month moving average vas se-
lected since it gives the same prediction variance as first order
exponential smoothing with a = 0.20, and also equates the average
age of the data.*

For ease of reference, we list the techniques in Table 2.

See Section III, Eq. 8, or Table 1.
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Table 2

PREDICTION TECHNIQUES - DESIGN 1

Technique
Number

Description of Technique

Value of
Weight 0

First-order exponentially
weighted average applied
to demand rates

0.10

First-order exponentially
wveighted average applied
to demand rates

o.m

Exponential weighting with
trend applied to demand
rates

0.10

Exponential weighting with
trend applied to demand
rates

0.20

Unweighted cumulative
average applied to demard
rates

First-order exponentially
wveighted average applied
to actual demands

0.10

First-order exponentially

weighteu average applied

to actual demands

0.20

Exponential weighting with
trend applied to ectual
demands

0.10

Exponential weighting with

trend applied to actual

tlmnd-

0.20

10

Unweighted nine-month moving
verage applied to demand
ates




e neasures of accuracy used for making comparisons among the
techaiques are the same as those used in MN-2811, vis., the average
wonthly error (AME), the relative error (RE), and the root mean square
error (RMS). In addition, the average absolute error or mean absolute
deviation of the monthly predictions (MAD) was added to this study
vhen we discovered, during discussions of RN-2811, that interest in
this measure existed.

To express the above measures in symbolic form, let D be the

t+k
predicted demand in month t+k based on t months of experience. Thus,
for exssple, in Techniques 1 and 2, Dt#k is D multiplied by ihe ac-
tivity in the (t+k)th month, vhereas in Techniques 6 and 7, it is the
sane as Dt' Since wve are predicting for 12 months in the future, k
will take cn the values 1, 2, ... 12 for a given t. We let D“k be
the actual demands in the kth month following t months of experience.
With this notation, the four measures Of accurecy can be expressed

sywbolically as follows:
n )
aS - i!,‘z.l(”?x‘ o)
u ~n
'“?ﬂ' h‘xgl Peax = Peus]

g (Byuy = D)
é”f»x
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1 - 2
Re "\ffe'Z (Dyyx = Dpaye)

There were 21 prediction sets for the B-52 parts and 14 for the

Falcon componen’:s because of the amount of data availaole. We fur-
ther restricted the number of prediction sets by computing the error
measures only after "meaningful' experi>nce had occurred. For the
B-52 parts we began with predictions based o;'x the first 12 months of
experience, and for the Fal(on components after 8 months. Hence in
the above formulas, t = 12, 13, ..., 21 for the B-52 parts, giving 10
sets of error measures. For the Falcon components, t = 8, 9, ..., 1k,

ylelding 7 sets of error measures.

USING TEE MEASURES OF ACCURACY

The four measures of accuracy are sumnary me-.,uares for each line
item in the 12-month period following each experience period. Since
the Average Monthly Error (AME) is simply the algebraic sum (divided
by 12) of the prediction errors for each of 12 months, it can be ccn-
sidered as a measure of the total error for a l2-month period. That
is, the computed AME is jJust one-twelfth of the total error for one
year. It seems to be the most apipropriste measure for selecting a
"preferred" technique because the Air Force is usually interested in
predicting requirements over a period of several moinths, often a pro-
curement leadtime. Of course, any particular measure of accuracy has
its disadvantages, but in most cases the technique with the smallest
AME also gave the smallest values for the other measures. The pre-

ferred technique for each item was selected as in RM-2811. In general,
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it vas the one vhich yielded the smallest AME for the greatest number
of prediction sets. Modifications of this procedure were made when
there vas no single technique vhich satisfied this criterion, as de~
scribed in the earlier Memorandums.

Our objective, of course, is not to find the best technique for
each item. Rather, wve wvant to determine which technique is preferred
over a representative sample of items. One obvious approach is to
count the number of items for which each technique performs best. Hcew-
ever, wvhen many techniques are being compared in this way, it 1s unlikely
that one technique will perform best on a majority of the items. Lack-
ing such a majority, e technique should not be labelled as the "best"
simply because it was preferred for the largest number of items. There
may be another technique which, vhen compared with this “best" one,
would be selected for a majority of the items. A sufficient test for
designating a best technique would be to show that it was preferred
for a majority of the items for each paired comparison of techniques.
Unfortunately, as the folloving example shows, there may be no teach-
nique vith this property. Suppose there are three line items, 1, 2,
3, and three techniques A, B, C. Let technique A be preferred to
technique B on two iteas and let tecknique B de preferred to i2:hnique
. on two 1tems. If preferences vere transitive, technique A would be
preferred to technique ¢. Howewer, the tabulation belov shows that s
case can be devised in vhieh C is preferred to A on two parts and
therefore nc technique is preferred overall. 7The result can, of course,

[ )
be generalited to & larger syetem.

"Mhis e known as the "paredox of " e literature. See,
for example, K. J. Arraw, s, John Wiley
and Sonl, Inc., KNew Ym. s Pt %o



Ranking of Line Items

Technt ques 1 2 3
Best A c b
Median B A C
Worst c B A

Section IX discustes the defects nf this counting procedure at
greater length and derives a better method for selecting a preferred
technique applicable to the low cost items of Design 2. Since the
counting procedure is so simple, however, it was used in both Design 1

and Design 2.



VII. RESULTE OF THE TEST - DESION )

This section susmarises the results of applying the 10 techniques
to the tvo sets of data (B-52 parts and Falcon components) and states
our findings and conclusions for Design 1.'

Teble > shows the number of ,artuy by preferred technique and
property class for all 125 parts in the sample, for the 53 parts vhich
had no demands in the first 1Z months, and for the 60 arts which had
at lsast 10 demands in the first 21 months. The tvo sub-samples of
53 and 60 parts respectively were isolated to determine vhether some
techniques are particularly good on low (high) demand parts.

From Table 3-A we gsee that T« ~hniques 4, 5, 6 and 9 are preferred
for about the same number of parts, as are 1 and 3. There were 50
parts for vhich exponential smoothing techniques, teking account of
flying hours (Nos. 1-U) were preferred, and 50 for which exponential
smoothing techniques vithout program element (Nos. 6-9) were preferred.

We nade paired camparisons between Techniqus 5, the issue rate
technigue, and Nos. 1, 3, 4, 6 and 9. Many paired comparisons are
possible, but they are tedious to make. B8ince we are interested
primarily in comparing the current Air Foree procedure wvith various
expunential smoothing procedures which seem to hold some pramise of
iaprovement, ve limited the number of coamparisons. The following
mmbers of part-preferences vere obtnnod:"

'm computer calculations wvere programmed by D. Hopf.

**Me total for esch camparison is not 125, the total mumber of
parts in the sample. This is due to the fact that for some parts it
vas impossible to make a selection bascd on the two techniques bdeing

campared.
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NUMBER OF B-52 PARTS BY Ph-

Property
Class 1 2 3 b I
Engine - - - -
Alrfreme 6 - b 3
Gunnery 1l 1l 2 6
Fire Control - - - 1
Communications 5 ! 5 -3
Accessories 2 - 3 T
Total | 1b 2 1k 2 '




CHENIQUE AND PROPERTY CLASS




FMumber
Techniques of Parts _ _Techniques of Parts
59 62
62 58

W\ |\
VR | O\
o
-3

The difference between the mumbers Of parts in each camparison is
not staetistically significant. Hence on the basis of both criteria --
ranking and paired comparisons, we conclude that for this entire sample
of 125 parts no one of the exponential smoothing procedures is better
than the issue rate procedure currently being used in the Air Force.

Table 3-B shows the preferences vhen we consider only the 53 parts
vhich had no demands during the first 12 months. That exponential
smoothing techniques with trend are preferred to those without trend
is logical. Thus Technique 9 is preferred for ths largest mmber of
parts, 18. Technique 4 is preferred for the next largest mmber, l..
Both of these we @ = .80; 9 1s applied to actual demends and U to
demand retes.

Teble 3-C shows the 4istridution of preferences for the 60 perts
vith at least 10 dsmands in the first 21 months. Technique 6 has the
largest mmber of preferences, 13; Techniques 4, 5, and 9 each have
about the same mmber. Again ve see 10 real preference for exponential
smoothing.

Table 4 shows the mmber of components of the Falcon missile by
preferred technique and general characteristics. Teschnique 1 vas



BLANK PAGE



> L
B. 53 Parts wit
2 - 2
1 41 3.
1 e I
- 2 i
Total b 5 1
60 Parts with At
— - -___
3 1
1 3
- 1
2 1
b 3
1 9 _

.



dque
S LI g 9120 l.mu.__
xmands in First 12 Months
2 - - 1 1 8
o~ = e -_].-.; = 19
- - - 1 1 9
e e v] = Al
3 1l 2 18 2 52
10 Demands in First 21 Months
1 - - 1 - 3
3 - 1 - 1 12
1 - - - b
- - - - - 1l
2 = = > 5
5 - - 1 1 15
115 - 2 110 12 60

184



NUMBER OF FALCON COQ

AND ZEAE
General
Characteristics 1 2 3 l
Blectronic 2 1 1l 1
Klectrical-
Mechanical 1 1 2
Mechanical with
Mo Noving Perts | 2 - p N
Total 5 2 y




el

} BY PREFERRED TECHNIQUE

ACTERISTICS
que
5 8 9 _[ 10 | Total ‘
—y —’T———‘
1 - - 1 8
3 - - - 9
- 1 1 1 a
4 1 1 R 23

2
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prefe-red for the langest mmiber of compcments, 5, sl Techmiques 3,
b, end 5 were cach preferred for 4k camponexts. There were mo prefer-
epces for Techniques 6 and 7. Herc we see, hovever, that to use a
progran element, check-outs, is Letter than not to use it: there were
15 preferences for iechniques 1l-4, and omly 2 for 6-G. This 1s due to
the accelerated phase-in of the Falcon missile durimg She period in
quutim.‘

We mede paired camparisons betweenz Technique 5, the issue-rate
technique, end Nos. 1, 3, ed U4, vith the following results.

Ramber
Techniques of Purts

S R

=\
18K

2 ¥ B WV AV
<RilE

The difference betvesn the mmbers of parts in eech comparison is not
statistically csignificent. Nence, as in the case of the B-52 parts,
there 1s 00 real preference for an expsnential smoothing vechnique,
regardisss of whieh oriterion is wed -- _snking or paired camparison.

Astracben, Nrovn, end Eoughten, op. eit., p. 6B.
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VIII. DESIGN 2 -- DATA, TECENICUES, AND RESULTS

The data used in Design 1 were for Hi-Valu and Category II re-
coverable items for both the B-52 and the Falcon missile. Furthermore,
the demands wvere at base level. It seemed desirable to test expo-
nential smoothing tezhniques on some Category III items. Demands for
such items are generally much higher than for Hi-Valu and Category IXI-R
parts; there are many more Category III parts; and they are managed
differently. If spplicable, the automatic computing procedures of
exponential smoothing (wvith or without trend) and decreased data storage
requiremsents could be valuable.

Cklahoms City Air Materiel Area (OCAM2) had issue history on about
160.000 m’n-sz {tems for the 294 months from April 16, 1960 to Sep-
tember 30, 1962. Data on & ssmple of about 16,000 items were made
available to us. The information for each line item included, among
other things, the number of requisitions and the number of issues on
& quarterly besis, unit cost, and the Rxpendadility/Repair/Cost (ERC)
Code. NRpendsble Category III items have ERC code “N".

We selected & sample from the 16,000 consisting of every 25th item
that had some issuss &uring the firet seven quarters snd ERC code N,
beginning vith the first item in the listing that satisfied these con-
ditions. There were M@5 items in this sample. On the grounds that
exponential smoothing would probably not be wsed on items wvith less
than one demard per quarter, ve then eliminated all items which had
fever than 10 issues &wring the first seven quarters. This reduced our
sample sige to 292.

Wespon -« under this mansgement concept most of the

Systea Mansger
issues are made to satisfy routine base demand. JFor items which are
peculiar to the vespon system there vill be some issues to Specialized

Repair Activities (SRA).
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It 1s of some interest to examine the fluctuations in the aversge
issues per line item during the data-collection period, as shown in
Table 5.

The aversge number of issues per line item for all ten quarters
is 163.4. PFor the first b quarters it is 148.5; for the first T it
1s 162.0. The largest average occurs in the seventh quarter, 239.1,
and the smallest in the first, 104.4." There is no pattern to these

everages Thus the average number of issues per month ranged from

Table 5

AVERAGE ISSUES PER LINE ITEM
(Ten quarters, 292 items)

Quarter Average

104.4
1“309
185.5
160.2
137.7
162.9
239.1
1sh.1
145.9
200.3

OO O~ O\ &Fw D+

s

about 3 to 8 per line item. In our sample of 292, there occurred 51
items for wvhich there were recorded issues during only one of the
first seven quarters. Some of these had issues during the last 3
quarters. For all 425 items in the original semple, the aversges are
reduced by adbout one-third.

This may be due in part to the fact that the data for vhat we
are calling the first quarter really were for only 2% months. We feel
that the effect of this on our subsequent work is negligtiole.
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The most expernsive item in our initial ssple of 425 cost §159.
There were b issues of it during the fourth quarter and none at any
other time. The next most expensive unit cost $139. Thirty-five of
these were issued during the first 7 quarters and 30 in the last 3.
There was one issue in the fourth quarter and none at any other time
for an item vhich cost $99. Twenty $98.50 items were issued during
the 5th quarter and 18 in the last 3. All the other items cost less
than $90. Only the second and fourth of these four items were in-
cluded in our sample of 292.

There were 14 of the chespest item, which cost one cent. Issues
ranged from 6 to 53,698 during the first 7 quarters and from none to
18,742 in the last 3 quarters. There were 5 of these items which had
no issues during the last 3 quarters. During the Tirst 7, they had
402, 450, 555, 599, and 4,005 issues. The item which had six issues
in the first 7 quarters had 102 in the last three. It wvas not included
in our sample of 292.

The above again emphasites the difficulties inherent in demsnd
prediction due to the irregularities in demand patterns. This last
bears out the results of esrlier RAND studies.”

In order to give the readsr some feeling for the data,we have
included in Table 6 the wnit cost and quarterly issuss for every 10th
item in our semple of k25. It can de seen that issues from depot are
erretic. In fact, the ratio of variance to mean is greater than one
for nearly all the parts in the table. PFor some parts it is greater
than €0, as for exasple, numbers 22 and 1.

’See, for exsmple, Bernice Brown, Characteristics of Demand for
Alrcraft Spere Parts, The RAND Corporstion, 9 9 .
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There were 18 property classes represented in our sample of 292,
only four of vhich had at least 10 line items in them. We consoli-
dated the remaining 14 classes in stating our results. The following
table gives the number of items included in the property classes in
our sample:

No. of L/I
FEDERAL SUPPLY GROUP (FSG) in Sample

15 == Alrcruft and sirframe rtructural components....... 42
47 -- Pipe, tubing, hose, and fittingB...cccveevcccccss . 22
53 == Hardvare and abrasiveB.....ccoccccerccvsccocscsessdly
59 -~ Electrical and electronic equipment components ... Tl
momr'....‘....'..ﬂ.........‘.I......I.‘.....l...'.. ha

Total 292
The test design for these data differed from the one employed for
the B-52 and Falcon data. We used six techniques and predicted for
three quarters in the future. Historical base periods comsisting of
four quarters of data and seven quarters of dsta were usea.® Mo program
eslement vas introduced. The techniques are defined as follows:

Technique Base

~Busber_ Pertod Technique
1 first b quarters Issus rate
2 first & quarters Rqponential smoothing, @ = .20
3 first b quarters Bxponential smoothing, @ = .30
b first 7 quarters Issus rate
5 first 7 quarters Bxponential smoothing, o = .20
(3 first T quarters Beponential emoothing, a = .30

The same four measures of sccurscy were used as in the first
part of this stuly. Selections vere mede independently for the four-
quarter base and tue ‘aven-quarter base. The nusber of line items for
wvhich each technique is preferred is given in Tadble T.

*
The initial estimste for the exponential smoothing technique is

obtained by aversging the dats over the base period. (See 3. 3.)
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Table 7

NUMBER OF PARTS BY PREFERRED TECHNIQUE AND
FEDERAL SUPFLY GROUP

Technique
Four Quarter Base Seven Quarter Base

) No Nunber

Prefexr- Prefer-| of Line

FSG 112 3lence | ¥ ]| 5] 6 ence | Items
15 71 -] 6] 29, 12 -] [ 16 b2
ol f 5/ 1] 5 n_ 5| 1] 10 é 22
53 W 2/ n  so| 6| 43| 16 15
59 100 1{20 Yo | 251 2| & 23 yel
Others 6 --| 9 2T | 15| 1| 13 13 k2

Total | 62] 4]88] 138 |107] 10101 ™ i 292

Uaing four quarters of historical data, we were unsble to identi:
a preferred technique for 138 parts (47 per cent). Even vhen we used
7 quarters of dats, Th of the 292 parts (25 per cent) indicated 10
preferred technique.

Technique 3 (@ = .3) is preferred for the largest number of parts
based on 4 quarters of data. Yet there is no outstanding prefercnce
vhen 7 quariers are used, Techniques 4 /issue rate) and 6 (o = .3)
being preferred dy ubout the same number.

It 1s interesiing to exsmine the technique preferences for a line
item based on Lk and 7 quarters of data. Hopefully, if Technique 1 wer:
preferred fur a part based on the first 4 quarters of data, then Tech-
nique b shoald be preferred based on tie first 7 quarters of history.
The same should hold true for Techniques 2 and 5, and 3 and 6. This
did not happen, as can be ceen from Table 8.
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Table 8

NUMBER OF PARTS BY PREFERRED TECHILQUE BASED ON
4 AND 7 QUARTERS OF DATA

Technique - 7 Quarters

Technique - 4 Quarters

There vere only 12 parts for vhich the istue rste technique vas
preferred regardless of the amount of dats, none for 2 and 5, and 35
for 3 and 6 (exponential smoothing, @ = .3). There were 52 parts
(18 per cent) for vhich there vere no preferences based on either L
or 7 quarters of data. Thus we see that 1if one techaique is preferred
based cn b querters of data, there 1s no reason 10 suppose that this
same technique would be preferred as additional deaand experience
becomes available.

Techniques 1, 2, ané 3 tended tc overestimate as a growp and
Techniques &, 5, and 6 tended to underestizate as s grouwp. The

A

vy
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followlag table shows the number of perts for vwhich the preferred
techrnique under- and overestimated. Where there was no pretference,

it wvas still pcssitle to categorize the parts in this respect.

Table 9

NUMBER OF PARTS UNDERZSTIMATED OR
OVERESTIMATED BY PREFERRED

TECHNIQUE
R
AP
T Quarters
Underestimate Overestimate [ Total ﬂJ
o
5 Under-
|l esti- T2 o 182
g uate -
I Over- .
<] esti- 34 76 110
mate
Total 106 186 1 292

The number of parts for vhich the techniques, using the two bases,
consistently underestimated or overestimated was about the same, 72 and
76, respectively. Yor the totals, the nuzbers of line items were re-
versed, 182 and 110, cowpared with 106 and 186.

We 4id not use second order smoothing because it is unlikely that
one would vant to use & prediction technique with a trend factor of
only & quarters of data, or even of 7 quarters of data. Furthermore,
there 1s usually some question about the accuracy of the information
at the outset of a data collection program.

We also examined the 133 parts in cur original sample of 425 which
had fever than 10 issues during the first 7 quarters. With a base period
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of 4 quarters of data, there was no prefurred technique for 124 of
them. Of the remainder, Technique 1 was preferred for 8 of the items
and Technicue 3 for 1 of them. When we used 7 quarivers of data to
prelct, 113 items exhibited no preference, Technique 4 was preferred
for 6 and Technique 6 for 1li items.

Our data included the number of requisitions by quarter, as well
as the number of issues. We applied our techniques to predict the
number of requisiticns per quarter. Using 4 quarters of data, we
predicted the mumber of requisitions for the next 3 quarters and
multiplied these figures by the number of issues per requisition
during tlLe base period to get the number of demands. Then we followed
the same procedure using 7 quarters as a base. The results of the
selection of preferred techniques were substantially the same as when

we did not use requisitions. Hence the results are not included here.
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IX. MEASUREMENT OF AGGREGATE LOSS USING A STATTSTICAL
QACH

. In Sec. VI we described four measwres of error that were used to
assess prediction accuracy: average monthly error, average absolute
error, root mean square error, and relative error. Using the B-52
and Falcon data, we observed that for a particular line item the pre-
diction technique that resulted in the smallest value of average monthly
error usually had the smallest value for the other three measures of
error as well. We selected as the preferred one for each item that
technique with the smallest average monthly error for the greatest
number of prediction sets. To determine the preferred technique over
the entire sample of 125 B-52 parts and 23 Falcon components we simply
counted the number of times each technique was preferred (see Tables 3
and 4). Sim'lar procedures vere applied to the OCAMA data.

Such a counting procedure has several drawbacks. In the first
place, each item is weighted equally though the average demand and
unit cost vary widely from item to item. Secondly, if no technique
performs best on a majority of the items, one should evaluate them by
pairs. If there are several techniques, the number of required com-
parisuns may be very large. Still worse is the possibility that there
is no preferred technique, since the preference relations are not
tranaitive.* Thirdly, the procedure is insensitive to the magnitude
by which a technique is preferred. For example, the counting procedure
will label as "preferred" a technique that performs slightly better than

a second technique on the majority of items but far worse on the balance.

*See Sec, VI.
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We shall now describe another measure of aggregate error suitable
for use on the OCAMA data.* This measure does not possess the three
defects of the counting procedure noted above. iince we are concerned
with low-cost items that are managed under economic order quantity pro-

cedures, the approximate expression for total variable cost (TvC) for

a8 line item during a time period is:

(13) wc=§1‘c+§s.

vhere
Q = economic order quantity
I = interest rate per period
C = unit cost

x = demand per pericd

S

cost of placing an order

This is the familiar cost expression underlying the classical Wilson
economic lot size romula.m The first term on the right-hand side
is the holding cost per period and the second term is the procurement
cost per period. By dAifferentiating with respect to Q and setting the
derivative equal to sero, we obtain the well-known result for minimum

2x8
(14) Soptimm " 3Ic

In Eqs. 13 and 14 we have assumed that x, the true value of demand

during the period, is known. Actually owr problem is to make an

This procedure was suggested by G J. Feeney.
e
We are assuming x and Q are continuous variables.

]
See for example T. ', Whitin, The Theory of Inventory ement,
Princeton University Press, 1957, or 4. R. Ferguson and Lawrence Fis er,

Stock%ge Policies for Medium and Low-Cost Parts, The RAND Corporation,
m’l 2 @nl 19 .
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estimste of the value of demand which we shall denote by X. This
estimated value X will be used to determine Q in Eq. 14. This value
of Q is then substituted into Eq. 13 to give us the cost. The nuuber
of procurements, x/Q, and hence the cost, will still depend on the
true value of demand, Xx.

Let us define u(X,x) as the cost during a period vhen demand is

estimated as X but is actually x. Then from Eqs. 13 and 14,

(15) u(%,x) = -,/I-g-s-{-/;* &}

It 18 easily shown that this is minimized when the random variable i.
assumes the value X.

Let us defire a loss function, L(%,x) as the cost waen our estimate
of demand is X, minus ihe cost if we had made the correct decision X = x.

iben

L(R,x) = loss during & period when demand is estimated
as £ instead of x.

= u(2,x) - u(x,x)

(16) .Ji;.'i{vrov% - 25 L

Of course, the true value x is not known, but we shall assume that
1t is distiidbuted according to a provability distribution q(x). Our
problem i{s to choose R so that the expected value of the loss function
is minimized, 1.e., so that
(17) £ (L&) = [ L&x)exex

Jx
is minim{zed.
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Substituting Eq. 16 into Eq. 17 and taking the partial derivative with

respect to X ylelds the minimizing condition

(1 4 e -
vhence

(18) x -/ xq{x)ax .
x

In other words the loss function will be minimized if we choose an
estimate, X, equal to the mean of the distributiorn on the true parameter.
dhus it is not necessary to know anrbhing about the distribution g(x)
except its mean. Hence ) the exponentia.l smoothing and moving averag:
techniques which estimate the mean are consistent with this loss func-
tion.

In Fig. 2 we have plotted the loss function of Eq. 16 divided by
VX aguinst the ratio of estimated to cbserved demand, ‘, assuming
1/10?_ 1. Note that the graph is not symmetric. If we had plotted
the loss Nuction against log g, the graph would be symmetric about
2

" 1.

By considering x to be a constant we can see the effect of changes
in the ratio ﬁ/x' That the value of L(%,x) /(X is greater for an
underestimate than for an overestimste of the same amount agrees with
our iatuition of how the function should behav: in an inventory system.
If we over- or underestimate by the same relative amounts, the values
of the function ar~ the same.

The aggregate measure of loss for a technique is obtained by rimply

computing Eq. 16 for each item and sumning over all items. Not2 that the
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dimensions of Eq. 16 are dollars, and that consequently this aggregate
loss has an economic irterpretation which is more useful than a measure-
ment of aggregate error in per cent, for example. The va.ue of X is

obtained from the prediction technique, and the value of observed demand

o
+

@
I

Loss
(Observed dcvmmd)y2

o
|

Note: Assume

that Ics _
5 =

— e —— - — — - - .

LG, x) V=
>
I

1 . L .
4 S 6 7 8

= Estimaoted demand

Observed demand

L
3
A
2
4

Fig.2—The loss function divided by, A"

is entered for x. We artificially set X = 1 in those cases where the pre-

diction technique would have specified zero to prevent Eq. 16 from becoaing



L8

infinite. Over a group of items, I and S will usually be considered
constants. 3Since the statistical analysis which follows is not affected
by these mues’ ve assumed that '\ﬁ-g =1,

For the entire sample of 425 line items, the aggregate loss/item
during the prediction period under each technique is given in the

following tables:

Four Quarter Base ~Seven Quarter Base
Aggregate Aggregate
Technique | Loss/Iten Technique | Loss/Item
1 $9.22 L $ 4.68
2 9'18 5 ho%
3 9.05 6 L. 46

We can also think of the Ventriel in the second colum in each table

S
as estimates of the average dollar loss/item (assuming '\/-T—; = 1) per
leadtime period for increased costs of procurement and holding due to

-
incorrect demand forecasts.
We cannot compare Techniques 1, 2, and 3 & & grouwp with Techniques
k, 5, and 6, because of the difference in the base and prediction periods.

One reasonable set of values satisfying i, 1 is to choose

I = .10 per period and 8 = $20 per order. In § case the period is

3 quarters so that the yearly interest rate would be (4/3) .10 = .13.

Studies performed by M.I.T. for the Avmy Ordnance Corps indicate that

yearly interest rates of .17 and depot order costs of $100 are reason-
able in that application. Under these assumptions, the value of

1 = 2, 531
We ured the sign test, t-test, and Wilcoxon test to determine
vhether the results vere statistically significant. These tests are
not affected vhen the variadle is multiplied by a constant, in this case

2

“It is perhaps of some interest to note that during quarters 5, 6,
and 7 for which the first three techniques predict, the dollar value of
issues/line item was $161.43; during quarters 8, 9, and 10 for which the
laﬁ three techniques predict, the dollar value of issues/line item was
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It is admissible, however, to compare these two groups of techniques
vithin themselves. The application of statistical tests indicated
that there were no significant dirfferences among 1, 2, and 3 or among
4, 5, and 6 using the entire sample of 425 items.

We also applied the above procedures to the reduced sample of 292
items wvith at least ten demands in the f.rst seven quarters. The re-
sults wvere the same.

As a final test we predicted the dei and for the last three quarters
based on the preceding four jquarters of data. In other words we used
Techniques 1, 2, and 3, but with quarters 4-7 instead of 1-i as a base.
This enabled us to compare the aggregate loss based on four quarters
with the aggregate loss based on seven quarters (using Techniques 4,

5, and 6), since the period being predicted was the same. The aggre-
gate loss/item vas found to be $4.96, $4.86, and $4.79 to correspond
vith techniques 4, 5, 6, respectively, in the table above. We note
that the use of three additional quarters of data on vhich to base
predictions decreases the aggregate J.ou/iten. These decreases are not
statistically significant. However, we are led to the speculation that
data vhich are more thian a couple of years old may have negligible value
for rrediction purposes. More precisely, it appears likely that the
information, i1f any, provided by data older than, say, two years is
related primarily to the non-stationary characteristics of the demand
distridbution.

In conclusion, we should remind the reader that the loss function
discussed in this section considers only procurement and holding costs.
We realize that stockout costs, which we have omitted, are extremely

important, but they are difficult to sssess objectively. How much does
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a stockout cost? Is a stockcut on a $§ .0l item as costly as a stock-
out on a $30.70 item? Are ten stockouts on an item ten times as costly
as one stockout?

The advantage of avoiding arbitrary assumptions about stockout
cosvs 18 that the loss Hmetion in Eq. 16 has only two parameters, I
and S5, vhich are constant over all the items. We can make reasonable
estimates of these parameters. Further, since they are constant for
all items, they do not affect tests of statistical significance based
on the loss functions. Finally, it is important to keep in mind that
the aggregate loss function is being used to evaluate prediction tech-
niques. We are not constructing an inventory palicy. If we were, we

should be obliged to consider stockouts.
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X. FINDINGS AND CONCLUSIONS

Exponential smoothing Coes not appear to bhe a signjficantly better

predictor than the cumulative issue rate techniques :urrently being used.

The ranking procedure uced to evaluate both designs did not enable us to
pick a preferred technique. When we applied the more sensitive test of
aggregate loss in Design 2 for the Category IIX data, there were stiil
no stetistically significant differences between techniques.

We remind the reader, however, that exponential smoothing has
definite computational advantages. For first order exponential smocth-
ing on’.y one average need be stored for each item -~ this in contrast
with tae requirements of a cumulative issue rate or a moving average.

A trend can be readily accommodated with exponential smoothiag, aad

the rate of response due to the smoothing constant can be easily changed.

A measurement of aggregate loss seems to be of fundamente¢® impor-
tance in assessing prediction accurscy. Some readers ray complain about

a sophisticated mesasurenent of error such as the sggregate loss functioa
developed in this Memorandum using a statistical decision theory point
of viev. Obviously it is based on a simple model which balances pro-
curement costs agains > holding costs. It is certainly not a compre-
hensive model, On t1' other hand it is cleoxr that simple ranking
procedures are highly questionable and furthermore that they are not
sufficiently sensitive. Ranking procedures ignore magnitude infor-
mation, behaving like a sign test in classical statistics. We feel

that future enpirical tests of prediction techniques will inevitably
fail unless sensitive measuring instruments such as aggregate loss
functions are employed. Such functions wre less arbitrary and logically
more appropriate.
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Program element data are veluable for prediction. This conclusion

is based on the analysis of the Falcon da*a in Design 1. ..zdiction
accursacy was substantially improved for 19 of 23 parts by the inclusion
cf a program element (checkcuts). Of course, the use of a nwcgram ele-
ment requires that it bLe forecasted so that predicted demand per program
element can be converted to predicted demand. Haturally the importance
of a program element is determined b, the rate at which a weapon is
phased in.

Ne program element information was available for the d=pot issues
of Category III items in Desizn 2.

The use of requisition data did not alter ihe accuracy of demand

predicticn. For the Categcry III depot issues of Design 2 we had
quarterly dats oy item giving total requisitions and total issues.

When the techniques of Design 2 were applied to requisitions for pre-
diction and then multiplied by the aversge issues per requisition
computed over the base period, the resulting predictions were sub-
stantially unchanged. Of course, there is an unlimited number of ways
that the requisition data could have b=en used. For instance, we might
have applied the technigues to issues per requisition, but this would
require an estimate of requisitfons in the futur~ by item. Swh a
procedure wouléd be similar to using a program slement except that it
wotild necessitate @ different program elesent for each item. BSiace
this does not seem feagible, we restricted our attention to the one
spplication of the requisition data described above. Our conclusion
that requisiiion data did not alter the accuracy of prediction is based
on this spplication. However, we 4o not exclude the possidbility that a
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reasonable procedure ma;’ be devised that wiil be able to extract
information from the requisition data for prediction purposes.

The accuracy of first order orediction does not increase sub-

stantially when the base period becomes lon~er than a year. This

cunclusion is based on the depot issues for Category III items in
whicn the aggregate loss/item was decreased bty a moximum of T per cent
(on exponential smoothing with & constant of .30) when the base period
was extended from four quarters to seven. Trend calculations (second-
order) were not made because of tne paucity of data. Our conclusion
suggests that the information, if any, in data more than a couple of
years old 1s primarily related to trend.

The variance in depot issues 1s extremely high. If demands for

an item from the depot were placed in a random mgnner, statistical
theory predictz that we would observe a variance to mean ratio of one
in the demand pattern. The variance to aean rutios 4lat w>» observed

in the Category III depot data were almont always greater than one,

and often as large as 50 or 100, Actually we know that demands on the
depot do not occur at random by design. Bases order large quantities
at infrequent intervals according to an economic Lit-size type of
criterion that s:tempts to belance the costs of procurement with the
costs of holdins. Thuis artificielly emplifies tiuc fluctuations of
éemand that are made -~ the depot. Very Little eapiricul work has been
done for multi-echelc. demand problems, *ut iy is obvious that an inven-
tory system designed to optimige base per”ormance only may be decidedly

non-optimum on & system basis.
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